Almost Cubic Bound for Depth Three Circuits in VP

نویسنده

  • Morris Yau
چکیده

In "An almost Cubic Lower Bound for Depth Three Arithmetic Circuits", [KST16] present an infinite family of polynomials in VNP, {Pn}n∈Z+ on n variables with degree n such that every ∑∏∑ circuit computing Pn is of size Ω̃(n3). A similar result was proven in [BLS16] for polynomials in VP with lower bound Ω ( n3 2 p logn ) . We present a modified polynomial and perform a tighter analysis to obtain an Ω̃(n3) lower bound for a family of polynomials in VP effectively bridging the VP and VNP results up to a log5 n factor. More generally, we show that for every N and D satisfying poly(N) > D > log2 N, there exist polynomials PN,D on N variable of degree D in VP that can not be computed by circuits of size Ω̃(N2D).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Almost Cubic Lower Bound for Depth Three Arithmetic Circuits

We show an Ω ( n (lnn)3 ) lower bound on the number of gates of any depth three (ΣΠΣ) arithmetic circuit computing an explicit multilinear polynomial in n variables over any field. This improves upon the previously known quadratic lower bound by Shpilka and Wigderson [SW99, SW01].

متن کامل

An Almost Cubic Lower Bound for ΣΠΣ Circuits Computing a Polynomial in VP

In this note, we prove that there is an explicit polynomial in VP such that any ΣΠΣ arithmetic circuit computing it must have size at least n3−o(1). Up to n factors, this strengthens a recent result of Kayal, Saha and Tavenas (ICALP 2016) which gives a polynomial in VNP with the property that any ΣΠΣ arithmetic circuit computing it must have size Ω̃(n).

متن کامل

On the Limits of Depth Reduction at Depth 3 Over Small Finite Fields

In a surprising recent result, Gupta et.al. [GKKS13b] have proved that over Q any nvariate and n-degree polynomial in VP can also be computed by a depth three ΣΠΣ circuit of size 2 √ n log . Over fixed-size finite fields, Grigoriev and Karpinski proved that any ΣΠΣ circuit that computes the determinant (or the permanent) polynomial of a n× n matrix must be of size 2. In this paper, for an expli...

متن کامل

Depth-4 Lower Bounds, Determinantal Complexity: A Unified Approach

Tavenas has recently proved that any nO(1)-variate and degree n polynomial in VP can be computed by a depth-4 ΣΠ[O( p n)]ΣΠ[ p n] circuit of size 2O( p n log n) [Tav13]. So to prove VP 6= VNP, it is sufficient to show that an explicit polynomial ∈ VNP of degree n requires 2ω( p n log n) size depth-4 circuits. Soon after Tavenas’s result, for two different explicit polynomials, depth-4 circuit s...

متن کامل

Limitations of sum of products of Read-Once Polynomials

We study limitations of polynomials computed by depth two circuits built over read-once polynomials (ROPs) and depth three syntactically multi-linear formulas. We prove an exponential lower bound for the size of the ΣΠ ] arithmetic circuits built over syntactically multi-linear ΣΠΣ ] arithmetic circuits computing a product of variable disjoint linear forms on N variables. We extend the result t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electronic Colloquium on Computational Complexity (ECCC)

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2016